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Background & Motivation

Computer Vision
- “Enables computers and systems to derive meaningful information from digital
images” — From IBM Topics
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Background & Motivation

Computer Vision
- “Enables computers and systems to derive meaningful information from digital
images” — From IBM Topics

- Applications we have already seen:
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tick fireboat bumper car
starfish drilling platform golfcart
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Background & Motivation

What if we can actively determine where we want to look next?

Where to
look next?
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Background & Motivation

What if we can actively determine where we want to look next?

Where to
look next?

e

.-

gol

agent

But... what does it really mean?
What is the problem we are trying to solve here?
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Problem Formulation

The paper does not provide a generalized problem definition

Example: 3D object understanding task
- 3D Object -

- M*N discrete observation locations
- Camera

- Action: 5 elevations x 5 azimuths
- Number of Observations

- T=4
- Goal

- Shape reconstruction

object observation completion )

observations
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Problem Formulation

The paper does not provide a generalized problem definition

Example: 3D object understanding task
- 3D Object (Environment): -
M*N discrete observation locations

- Camera (Active Agent):
Action: 5 elevations x 5 azimuths

- Number of Observations (Time):
T=4

- Goal (Exploration Objective):
Shape reconstruction

object observation completion )

observations
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Prior Work & limitations

e Saliency and attention: find most salient regions of already captured image/video data; predict the
gaze of human observer. Access to observation of the entire environment — to look for a new
observation.

e Optimal sensor placement: how to place sensors so that they provide maximum coverage.
Sensors are static — Active completion, reacting to past observations.

e Active perception: active object localization, action detection in video, object recognition.
Pre-defined recognition tasks — general data acquisition strategy in perception; manually labeled
data — unlabeled observations.

e Active visual localization and mapping: to limit samples needed to densely reconstruct a 3D
environment geometrically. Purely geometric methods require dense observations — infer missing
content with semantic and contextual clues.

e Learning to reconstruct: one-short reconstruction. Single view — sequence of views; image
feature learning — learn action policies.
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Prior Work: active object recognition

Look-ahead before you leap: end-to-end active recognition by forecasting
the effect of motion, ECCV (2016)

mug / bowl / frying pan? mug / bowl / frying pan?
74 mug ? frying pan
>
Starting view Uelected new view Starting view \%Iected new view

- “Supervised”: need object label
- “Unsupervised”: we are trying to reconstruct the object, no need for label
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Preliminary: RNN (LSTM)

Rolled RNN Unrolled RNN
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Preliminary: Reinforcement Learning (REINFORCE)

-

Environment

E

Policy gradient : E;[Vg(logm(s,a,0))R(T)]

Policy function Score function

z :
j Swar, Update rule : A8 = a * V(logn(s, a,8))R(7)
Interpreter / \
Change in parameters Learning rate
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Full Pipeline
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Loss function

Lr(X) =" d(@p(X, 0, + Ag), 2(X, 6;))

e Specifically,
VLr(X) backpropagated via the DECODE, AGGREGATE, FUSE, SENSE modules
e ACT is stochastic as it involves sampling — use REINFORCE to handle this:

R(X) = —Ly(X)
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Loss function

Lr(X) =" d(@p(X, 0, + Ag), 2(X, 6;))

e Specifically,

VLr(X) backpropagated via the DECODE, AGGREGATE, FUSE, SENSE modules
e ACT is stochastic as it involves sampling — use REINFORCE to handle this:

R(X) = —Lr(X)

o Is this actually the reason?
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Tricks

- In practice, it is beneficial to penalize errors in the predicted viewgrid at every
timestep rather than justatt =T

T MN

t=l 1=1

- Pretrain the entire network with T = 1
- Essentially, no action involved
- We will talk more about this later
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Experimental Setup: Active observation completion

Datasets:
SUN360 (scene) ModelNet (object)
e 26 category e  Train on seen (ModelNet-40 \ ModelNet-10); unseen
e 32x32 views from 5 camera elevations and (ModelNet-10)
8 azimuths e 32x32 views from 7 camera elevations and 12 azimuths
e  per-timestep motions within 3x5 e per-timestep motions within 5x5
e Training episode length T =6 e Training episode length T =4

Baselines: ours compared with

1-view: the method trained with T=1

random: the method with randomly action selection module

large-action: largest allowable action

peek-saliency: most salient view within reach at each timestep el sonatnan, christot kooh, and pietro perona.

"Graph-based visual saliency." Advances in neural
information processing systems 19 (2006).
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Result: Active observation completion

Dataset— SUN360 ModelNet (seen classes) ModelNet (unseen classes)
Method| — Metric— MSE(x1000) Improvement MSE(x1000) Improvement MSE(x1000) Improvement
l-view 39.40 - 3.83 - 7.38 -
random 31.88 19.09% 3.46 9.66% 6.22 15.72%
large—action 30.76 21.93% 3.44 10.18% 6.16 16.53%
peek-saliency [t2_3] 27.00 31.47% 3.47 9.40% 6.35 13.96%
ours 23.16 41.22% 3.25 15.14% 5.65 23.44%

e Improvements larger on more difficult datasets (SUN360 > unseen ModelNet
> seen ModelNet)

[23] Harel, Jonathan, Christof Koch, and Pietro Perona.
"Graph-based visual saliency." Advances in neural
information processing systems 19 (2006).

CS391R: Robot Learning (Fall 2022) 17




Result: Active observation completion

Dataset— SUN360 ModelNet (seen classes) ModelNet (unseen classes)
Method| — Metric— MSE(x1000) Improvement MSE(x1000) Improvement MSE(x1000) Improvement
l-view 39.40 - 3.83 - 7.38 -
random 31.88 19.09% 3.46 9.66% 6.22 15.72%
large—action 30.76 21.93% 3.44 10.18% 6.16 16.53%
peek-saliency [t2_3] 27.00 31.47% 3.47 9.40% 6.35 13.96%
ours 23.16 41.22% 3.25 15.14% 5.65 23.44%

e Improvements larger on more difficult datasets (SUN360 > unseen ModelNet
> seen ModelNet)
e These baselines are all relatively weak

[23] Harel, Jonathan, Christof Koch, and Pietro Perona.
"Graph-based visual saliency." Advances in neural
information processing systems 19 (2006).
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Result: Active observation completion

ModelNet seen classes ModelNet unseen classes
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Policy Transfer

Objective: to inject the generic look-around policy into unseen tasks in unseen

mug / bowl / frying pan?

environments.

Approach:
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mug / bowl / frying pan?

? mug ? frying pan
! -

Starting view \jselected new view

Starting view

Mlected new view

“model A”: an
end-to-end model using
random policies "\

zero overlap,
different categories

“‘model B”: an active
observation completion

model

labels from
correct
target label
set
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Result: Policy Transfer

SUN360 active categorization ModelNet-10 active categorization

93 ——1-view

# random-

89 policy
=~=sup-policy

87
=4 ours (policy

85

1 2 3 4 transfer)
timet timet
ours outperforms 1-view and , on par with sup-policy
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Limitations & Critiques
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Limitations & Critiques

- Unclear why co-training the policy and the reconstruction network
- Essentially 2 agents cooperating with each other
- Consider: the policy learns to stay fixed; the reconstruction network learns to reconstruct
only using the first observation
- This is a Nash equilibrium!
- Policy training relies on a good reconstruction network (trick 2)
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Tricks

- In practice, it is beneficial to penalize errors in the predicted viewgrid at every
timestep rather than justatt=T.

T MN

=1 9=%
- Pretrain the entire network with T = 1
- Essentially, no action involved

- This is essentially making sure that at the start of the training the reconstruction network
is already reasonable
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Limitations & Critiques

- Unclear why co-training the policy and the reconstruction network
- Essentially 2 agents cooperating with each other
- Consider: the policy learns to stay fixed; the reconstruction network learns to reconstruct
only using the first observation
- This is a Nash equilibrium!
- Policy training relies on a good reconstruction network (trick 2)

- How well can the policy generalize?

- What if the actor need to complete certain physical tasks while observing?
- e.g.: mobile manipulator
- What about if the total time T changes?
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Result Visualization (limitations)

GT viewgrid

What if T changes?
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Things to be improved...

- “ Exploration episodes are shown at https://goo.gl/BgWX3W”

Resource not found

The server has encountered a problem because the resource was not found.

Your request was :
https://people.eecs.berkeley.edu/~dineshj /projects/lookaround_supp/gifs/

- No code
- Not enough visual proof & no theoretical proof

28
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https://goo.gl/BgWX3W

Future works

Train faster and converge to better policies?
- Sidekick policy learning [Ramakrishnan et al. 2018]

Geometry awareness (cross-object occlusion)?
- Geometry-aware RNN [Cheng et al. 2018]
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Extended Readings

e Yang, J., Ren, Z, Xu, M., Chen, X., Crandall, D., Parikh, D., & Batra, D. (2019). Embodied amodal recognition:
Learning to move to perceive objects. Proceedings of the IEEE International Conference on Computer Vision,
2019-October, 2040-2050. https://doi.org/10.1109/ICCV.2019.00213

e Ramakrishnan, S. K., Al-Halah, Z., & Grauman, K. (2020). Occupancy Anticipation for Efficient Exploration and
Navigation. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 12350 LNCS, 400—418. https://doi.org/10.1007/978-3-030-58558-7_24

e Ramakrishnan, S. K., Jayaraman, D., & Grauman, K. (2021). An Exploration of Embodied Visual Exploration.
International Journal of Computer Vision, 129(5), 1616—1649. https://doi.org/10.1007/s11263-021-01437-z

e Cheng, R., Wang, Z., & Fragkiadaki, K. (2018). Geometry-aware recurrent neural networks for active visual
recognition. Advances in Neural Information Processing Systems, 2018-Decem(Nips), 5081-5091.
https://arxiv.org/pdf/1811.01292.pdf

e Ramakrishnan, S. K., & Grauman, K. (2018). Sidekick policy learning for active visual exploration. Lecture Notes in
Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
11216 LNCS, 424-442. https://doi.org/10.1007/978-3-030-01258-8_26
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Summary

e Problem: How can a visual agent autonomously capture good observations?

e Why important? Crucial step towards embodied, active agents in novel
environments

e Key limitations: limited generalizability, weak theoretical analysis

e Advantages: transferability, “unsupervised” training

e Key insights: the agent is rewarded for actions that reduce its uncertainty
about the unobserved portions of the environment

e What did they demonstrate by this insight?

o SOTA performance on active observation completion tasks
o First to accomplish “policy transfer” between tasks
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Thank you!
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